New research trends on high-precision time transfer technology
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    High-precision time transfer plays an important role in the areas of fundamental research and applications. Accompanying with the remarkable improvements in the ability of generating and measuring high-accuracy time-frequency signal, seeking for new time-transfer techniques between distant clocks with much further improved accuracy attracts attentions world-widely. The time-transfer technique based on optical pulses has the highest precision presently, and the further improvement in the accuracy is heavily dependent on the time-domain properties of the pulse as well as the sensitivity of the applied measurement on the exchanged pulse. The application of optical frequency comb in time transfer for a precision up to femtosecond level are currently the focus of much interest, and has recently achieved many breakthroughs. Further investigations show that, utilizing quantum techniques, i.e. quantum measurement technique and quantum optical pulse source, can lead to a new limit on the measured timing information. Furthermore, it can be immune from atmospheric parameters, such as pressure, temperature, humidity and so on. Such quantum improvements on time-transfer have a bright prospect in the future applications requiring extremely high-accuracy timing and ranging. The potential achievements will form a technical basis for the future realization of sub-femtosecond time transfer system.

    Reference
    Related
    Cited by
Get Citation

DONG Ruifang*, QUAN Run’ai, HOU Feiyan, WANG Shaofeng, XIANG Xiao, ZHOU Conghua, WANG Mengmeng, LIU Tao, ZHANG Shou’gang.[J]. Instrumentation,2015,2(4):3-15

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: April 20,2016
  • Published:
License
  • Copyright (c) 2023 by the authors. This work is licensed under a Creative
  • Creative Commons Attribution-ShareAlike 4.0 International License.