Sequence-To-Sequence Learning for Online Imputation of Sensory Data
DOI:
Author:
Affiliation:

Faculty of Applied Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Online sensing can provide useful information in monitoring applications, for example, machine health monitoring, structural condition monitoring, environmental monitoring, and many more. Missing data is generally a significant issue in the sensory data that is collected online by sensing systems, which may affect the goals of monitoring programs. In this paper, a sequence-to-sequence learning model based on a recurrent neural network (RNN) architecture is presented. In the proposed method, multivariate time series of the monitored parameters is embedded into the neural network through layer-by-layer encoders where the hidden features of the inputs are adaptively extracted. Afterwards, predictions of the missing data are generated by network decoders, which are one-step-ahead predictive data sequences of the monitored parameters. The prediction performance of the proposed model is validated based on a real-world sensory dataset. The experimental results demonstrate the performance of the proposed RNN-encoder-decoder model with its capability in sequence-to-sequence learning for online imputation of sensory data.

    Reference
    Related
    Cited by
Get Citation

Kaitai TONG, Teng LI.[J]. Instrumentation,2019,6(2):63-70

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: October 29,2020
  • Published:
License
  • Copyright (c) 2023 by the authors. This work is licensed under a Creative
  • Creative Commons Attribution-ShareAlike 4.0 International License.