Capacitive micromachined ultrasonic transducer as a resonant temperature sensor
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Resonant temperature sensors have drawn considerable attention for their advantages such as high sensitivity, digitized signal output and high precision. This paper presents a new type of resonant temperature sensor, which uses capacitive micromachined ultrasonic transducer (CMUT) as the sensing element. A lumped electro-mechanical-thermal model was established to show its working principle for temperature measurement. The theoretical model explicitly explains the thermally induced changes in the resonant frequency of the CMUT. Then, the finite element method was used to further investigate the sensing performance. The numerical results agree well with the established analytical model qualitatively. The numerical results show that the resonant frequency varies linearly with the temperature over the range of 20 ℃ to 140℃ at the first four vibrating modes. However, the first order vibrating mode shows a higher sensitivity than the other three higher modes. When working at the first order vibrating mode, the temperature coefficient of the resonance frequency (TCf) can reach as high as -1114.3 ppm/℃ at a bias voltage equal to 90% of the collapse voltage of the MCUT. The corresponding nonlinear error was as low as 1.18%. It is discovered that the sensing sensitivity is dependent on the applied bias voltages. A higher sensitivity can be achieved by increasing the bias voltages.

    Reference
    Related
    Cited by
Get Citation

LI Zhikang, Rahman. hebibul, ZHAO Libo, YE Zhiying, LI Ping, ZHAO Yulong, JIANG Zhuangde.[J]. Instrumentation,2014,1(3):67-74

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: May 27,2015
  • Published:
License
  • Copyright (c) 2023 by the authors. This work is licensed under a Creative
  • Creative Commons Attribution-ShareAlike 4.0 International License.