Simulation of Crowd Motion Based on Boids Flocking Behavior and Social Force Model
Author:
Affiliation:

School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, China

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the process of crowd movement, pedestrians are often affected by their neighbors. In order to describe the consistency of adjacent individuals and collectivity of a group, this paper learns from the rules of the flocking behavior, such as segregation, alignment and cohesion, and proposes a method for crowd motion simulation based on the Boids model and social force model. Firstly, the perception area of individuals is divided into zone of segregation, alignment and cohesion. Secondly, the interactive force among individuals is calculated based upon the zone information, velocity vector and the group information. The interactive force among individuals is the synthesis of three forces: the repulsion force to avoid collisions, the alignment force to keep consistent with the velocity direction, and the attractive force to get close to the members of group. In segregation and alignment areas, the repulsion force and alignment force among pedestrians are limited by visual field factors. Finally, the interactive force among individuals, the driving force of destination and the repulsion force of obstacles work together to drive the behavior of crowd motion. The simulation results show that the proposed method can not only effectively simulate the interactive behavior between adjacent individuals but also the collective behavior of group.

    Reference
    Related
    Cited by
Get Citation

ZHANG Xuguang, ZHU Yanna.[J]. Instrumentation,2021,8(1):29-42

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: September 15,2021
  • Published:
License
  • Copyright (c) 2023 by the authors. This work is licensed under a Creative
  • Creative Commons Attribution-ShareAlike 4.0 International License.