Control of a 6DOF Mobile Manipulator with Object Detection and Tracking Using Stereo Vision
Author:
Affiliation:

Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Peradeniya, 20400, Peradeniya, Sri Lanka

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A supportive mobile robot for assisting the elderly is an emerging requirement mainly in countries like Japan where population ageing become relevant in near future. Falls related injuries are considered as a critical issue when taking into account the physical health of older people. A personal assistive robot with the capability of picking up and carrying objects for long/short distances can be used to overcome or lessen this problem. Here, we design and introduce a 3D dynamic simulation of such an assistive robot to perform pick and place of objects through visual recognition. The robot consists of two major components; a robotic arm or manipulator to do the pick and place, and an omnidirectional wheeled robotic platform to support mobility. Both components are designed and operated according to their kinematics and dynamics and the controllers are integrated for the combined performance. The objective was to improve the ac-curacy of the robot at a considerably high speed. Designed mobile manipulator has been successfully tested and sim-ulated with a stereo vision system to perform object recognition and tracking in a virtual environment resembling aroom of an elderly care. The tracking accuracy of the mobile manipulator at an average speed of 0.5m/s is 90% and is well suited for the proposed application.

    Reference
    Related
    Cited by
Get Citation

P. W. S. I. Wijethunga, I. A. Chandrawansa, B. M. D. T. Rathnayake, W. A. N. I. Harischandra, W. M. M. T. S. Weerakoon,,B. G. L. T. Samaranayake.[J]. Instrumentation,2021,8(1):1-13

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: September 15,2021
  • Published:
License
  • Copyright (c) 2023 by the authors. This work is licensed under a Creative
  • Creative Commons Attribution-ShareAlike 4.0 International License.